Multi-Input Convolutional Neural Network for Flower Grading
نویسندگان
چکیده
منابع مشابه
A Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملRelating Input Concepts to Convolutional Neural Network Decisions
Many current methods to interpret convolutional neural networks (CNNs) use 1 visualization techniques and words to highlight concepts of the input seemingly 2 relevant to a CNN’s decision. The methods hypothesize that the recognition of 3 these concepts are instrumental in the decision a CNN reaches, but the nature 4 of this relationship has not been well explored. To address this gap, this pap...
متن کاملMulti-input Cardiac Image Super-Resolution Using Convolutional Neural Networks
3D cardiac MR imaging enables accurate analysis of cardiac morphology and physiology. However, due to the requirements for long acquisition and breath-hold, the clinical routine is still dominated by multi-slice 2D imaging, which hamper the visualization of anatomy and quantitative measurements as relatively thick slices are acquired. As a solution, we propose a novel image super-resolution (SR...
متن کاملRelating Input Concepts to Convolutional Neural Network Decisions
Many current methods to interpret convolutional neural networks (CNNs) use visualization techniques and words to highlight concepts of the input seemingly relevant to a CNN’s decision. The methods hypothesize that the recognition of these concepts are instrumental in the decision a CNN reaches, but the nature of this relationship has not been well explored. To address this gap, this paper exami...
متن کاملFlower Categorization using Deep Convolutional Neural Networks
We have developed a deep learning network for classification of different flowers. For this, we have used Visual Geometry Group’s 102 category flower data-set having 8189 images of 102 categories from Oxford University. The method is basically divided in two parts i.e. Image segmentation and classification. We have compared two different Convolutional Neural Network architectures GoogLeNet and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Electrical and Computer Engineering
سال: 2017
ISSN: 2090-0147,2090-0155
DOI: 10.1155/2017/9240407